410 research outputs found

    Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm

    Get PDF
    Permission to redistribute provided by publishers.Three models of different stent designs implanted in a cerebral aneurysm, originating from the Virtual Intracranial Stenting Challenge'07, are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software in order to investigate the effects of non-Newtonian viscosity and pulsatile flow. Conventional mass inflow and wall shear stress (WSS) output are used as a means of comparing the cfd simulations. In addition, a WSS distribution is presented, which clearly discriminates in favour of the stent design identified by other groups. It is concluded that non-Newtonian and pulsatile effects are important to include in order to avoid underestimating wss, to understand dynamic flow effects, and to discriminate more effectively between stent designs. © Authors 2011

    Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1

    Get PDF
    The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development

    The structure and emission model of the relativistic jet in the quasar 3C 279 inferred from radio to high-energy gamma-ray observations in 2008-2010

    Get PDF
    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of `isolated' flares separated by ~90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from ~ 1 pc to ~ 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.Comment: 23 pages, 18 figures 5 tables, Accepted for publication in The Astrophysical Journa

    Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT

    Get PDF
    Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search for gamma-ray emission in Fermi LAT data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in dense CSM. We search for a gamma-ray excess at each SNe location in a one year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months and 3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the gamma-ray luminosity and the ratio of gamma-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic gamma-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at 95% confidence level (CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak ([email protected]), updated author list and acknowledgement

    Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT

    Get PDF
    Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of γ\gamma-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential γ\gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into bbb\overline{b}, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for mDM100GeVm_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}. In a more optimistic scenario, we exclude σv3×1026cm3s1\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}} for mDM40GeVm_{\mathrm{DM}}\lesssim40\,\mathrm{GeV} for the same channel. Finally, we derive upper limits on the γ\gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than 6%\sim6\%.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in ApJ; corresponding authors: T. Jogler, S. Zimmer & A. Pinzk

    Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over \sim 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum and with no significant correlation of X-ray flux with the gamma-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and gamma-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.Comment: 14 pages, 6 figures, 2 tables. Accepted by the The Astrophysical Journal. Corresponding authors: S. Ciprini (ASI ASDC & INAF OAR, Rome, Italy), S. Buson (INAF Padova & Univ. of Padova, Padova, Italy), J. Finke (NRL, Washington, DC, USA), F. D'Ammando (INAF IRA, Bologna, Italy

    Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009

    Full text link
    We present the light curves and spectral data of two exceptionally luminous gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During these flares, having a duration of a few days, the source reached its highest gamma-ray flux ever measured. This allowed us to study in some details their spectral and temporal structures. The rise and decay are asymmetric on timescales of 6 hours, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G. Tosti, [email protected]. 15 pages, 4 figures, published in The Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010

    Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113

    Get PDF
    We report for the first time a gamma-ray and multi-wavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E >100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters. Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S. Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA GSFC
    corecore